Abstract

The ultimate strain value for rocks in aggregate with their other physicomechanical characteristics plays a substantial role when solving different problems related to the bearing capacity and behavior of soils. These include determination of the maximum displacement, velocity, and acceleration values of soils during earthquakes and estimation of the potential strain energy accumulated in a medium during strong earthquake preparation. The latter parameter is also key in predicting earthquakes from the ultimate strain of rocks. The paper describes a technique developed by the author for determining the ultimate strain of soil columns under natural conditions from their relative slope on the surface after a strong earthquake. The empirical dependences of the ultimate strain of rocks on earthquake magnitude, relative slip, rupture length, and the seismic moment are obtained by analyzing their values calculated by the proposed method for 44 strong earthquakes with magnitudes of 5.6–8.5. A comparative analysis of the ultimate strain values obtained by other researchers by geodesic triangulation is performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.