Abstract

The creation of practical paper-based electronics requires secured conductivity with conductive silver tracks fabricated on a paper substrate. Various paper properties were explored for obtaining the key parameters intimately related to printed circuit qualities. A comparison of the resistance of silver tracks printed by ink-jet with a tetradecane-based ink of silver nanoparticles among four substrates—photo-quality ink-jet paper, matte-type ink-jet paper, coated offset paper, and uncoated laboratory sheets—implied the importance of pore size, porosity, surface roughness, and surface energy. Paper surface layers with small pore sizes and high porosities produced highly conductive, narrow silver tracks because of quick ink absorption, as observed in the photo-quality ink-jet paper. The surface roughness induced a high resistance to peel-off force at the expense of conductivity, and this improvement in the peel-off resistance is considered to be achieved because of the anchor effect of silver nanoparticle inks which fell into dents present on the rough paper surfaces. The widths of the silver tracks were significantly reduced by controlling the surface energies of the paper sheets. This tendency was remarkable, especially for uncoated laboratory sheets, and thus the conductivities of the silver tracks were successfully improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.