Abstract

Capillary ion electrophoresis (CIE) is a capillary electrophoretic technique optimized for rapid determination of low-molecular-mass inorganic and organic ions. CIE predominantly employs indirect UV detection since the majority of the analytes lack specific chromophores. Described are three methods for detection and electrolyte optimization. The first method discussed approaches for optimizing sensitivity, selectivity and peak confirmation using a chromate electrolyte and selected detection wavelengths. Peak confirmation is aided by using both direct detection of analytes. The second and third methods involve an unattended electrolyte development approach for instruments that only provide fresh electrolyte on the injection side of the capillary. The electrolyte composition is changed in both the injection side vial and in capillary before each sample injection while leaving the receiving side electrolyte vial constant at the initial electrolyte composition. In one mode, the concentration of the electroosmotic flow (EOF) modifier used to induce anodic flow is varied while keeping the background electrolyte composition constant. In a second experiment, the background electrolyte co-ion is sequentially changed from high mobility to low mobility while keeping the EOF modifier concentration constant. The end effect is to achieve a broad range of controlled peak symmetry for analytes in a simple matrix. The results are compared to separations obtained when the injection side and receiving side electrolytes are manually matched.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.