Abstract

Natural flavors and fragrances or their extracts have been widely used in a large variety of areas, including food, cosmetic, and tobacco industrial processes, among others. The compositions and intrinsic attributes of flavors and fragrances were related to many factors, such as species, geographical origin, planting environment, storage condition, processing method, and so on. This not only increased the difficulty in analyzing the product quality of flavors and fragrances, but also challenged the idea of “quality-by-design (QbD)”. This work proposed an integrated strategy for precise discovery of differential compounds among different classes and subsequent quality analysis of complex samples through flavors and fragrances used in tobacco industry as examples. Three pretreatment methods were first inspected to effectively characterize the sample compositions, including direct injection (DI), thermal desorption (TD), and stir bar sorptive extraction (SBSE)-TD, coupled with gas chromatography-mass spectrometry (GC–MS) analysis to obtain characteristic information of samples of flavors and fragrances. Then, principal component analysis (PCA) was applied to discover the relation and difference between chromatographic fingerprints and peak table data once significant components were recognized in a holistic manner. Model population analysis (MPA) was then used to quantitatively extract the characteristic chemicals representing the quality differences among different classes of samples. Some differential marker compounds were discovered for difference analysis, including benzyl alcohol, latin acid, l-menthol acid, decanoic acid ethyl ester, vanillin, trans-o-coumaric acid, benzyl benzoate, and so on. Furthermore, partial least squares-discriminant analysis (PLS-DA) and support vector machine (SVM) were respectively applied to construct multivariate models for evaluation of quality differences and variations. It was found that the accuracy attains to 100% for sample classification. With the help of optimal sample pretreatment technique and chemometric methods, the strategy for quality analysis and difference discovery proposed in this work can be widely delivered to more areas of complex plants with good interpretability and high accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call