Abstract

A novel method for quantifying the concentration of lactulose, rhamnose, xylose, and 3-O-methylglucose (3-OMG) in cat plasma using liquid chromatography-mass spectrometry (LC-MS) was developed. Domestic male cats (n = 13) were orally dosed with a solution containing the four sugars to test the permeability and absorptive capacity of their intestinal barrier. Plasma samples were taken 3 h later and were prepared with acetonitrile (ACN), dried under N2, and reconstituted in 90 % ACN with 1 mM ammonium formate. Stable isotope labelled 13C standards for each analyte were used as internal standards. Chromatographic separation was conducted using a Phenomenex Luna NH2 column with a gradient elution system of deionized water and 90 % ACN with 1 mM ammonium formate at 300 µL/min for 13 min total analysis time. Recovery trials were conducted in triplicate over three days with RSD values (%) for each day ranging from 1.2 to 1.4 for lactulose, 5.4 – 6.0 for rhamnose, 3.3 – 5.5 for xylose, and 2.6 – 5.6 for 3-OMG. Inter-day variations for each analyte were not different (p > 0.05). Limit of detection and quantification were 0.2 and 0.7 µg/mL for lactulose, 0.8 and 2.4 µg/mL for rhamnose, 0.6 and 1.8 µg/mL for xylose, and 0.3 and 1.1 µg/mL for 3-OMG, respectively. Plasma sugar concentrations recovered from cats were above the limit of quantification and below the highest calibration standard, validating the use of this method to test intestinal permeability and absorptive capacity in cats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.