Abstract

Nutrient deprivation strategies have been proposed as an adjuvant therapy for cancer cells due to their increased metabolic demand. We examined the specific inhibitory effects of amino acid deprivation on the metastatic phenotypes of the human triple-negative breast cancer (TNBC) cell lines MDA-MB-231 and Hs 578T, as well as the orthotopic 4T1 mouse TNBC tumor model. Among the 10 essential amino acids tested, methionine deprivation elicited the strongest inhibitory effects on the migration and invasion of these cancer cells. Methionine deprivation reduced the phosphorylation of focal adhesion kinase, as well as the activity and mRNA expression of matrix metalloproteinases MMP-2 and MMP-9, two major markers of metastasis, while increasing the mRNA expression of tissue inhibitor of metalloproteinase 1 in MDA-MB-231 cells. Furthermore, methionine restriction downregulated the metastasis-related factor urokinase plasminogen activatior and upregulated plasminogen activator inhibitor 1 mRNA expression. Animals on the methionine-deprived diet showed lower lung metastasis rates compared to mice on the control diet. Taken together, these results suggest that methionine restriction could provide a potential nutritional strategy for more effective cancer therapy.

Highlights

  • Breast cancer is the second most common form of cancer arising in women in worldwide [1]

  • To investigate the effect of deprivation of each amino acid in regards to triple negative breast cancer (TNBC) cell migration, MDA-MB-231 and Hs 578T cells were incubated with each amino acid-deprived media formulation for 24 hours

  • These results indicate that methionine deprivation elicits the strongest inhibitory effect on cell migration and invasion in these cell lines

Read more

Summary

Introduction

Breast cancer is the second most common form of cancer arising in women in worldwide [1]. The mortality rate of breast cancer patients has been declining due to early detection methods and improvements in surgery, radiation therapy, chemotherapy, and hormone therapies [2]. Some patients show resistance of these therapies. Triple-negative breast cancers (TNBC) account for 15-20% of all breast cancers. TNBC refers to an absence of the expression of three major hormone receptors; the estrogen receptor (ER), progesterone receptor (PR), and hormone epidermal growth factor receptor 2 (HER-2). A number of potent receptor-targeting drugs such as tamoxifen and trastuzumab target these receptors, and are ineffective for TNBC patients [3]. TNBC is generally more aggressive, with higher rates of relapse and lower rate of survival in metastatic status [4].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call