Abstract
This study investigates the potential of using gold nanoparticles (Au NPs) synthesized from e-waste as electrocatalysts for the methanol oxidation reaction (MOR), with the aim of applying them as an anode in alkaline direct methanol fuel cells (ADMFCs). The research addresses the pressing environmental challenge of e-waste disposal and explores the recycling of e-waste to obtain valuable materials for sustainable applications. Vulcan-supported gold nanoparticles (Aue-w/C NPs) are synthesized from gold coatings recovered from Intel Pentium 4 processor pins, demonstrating the feasibility of e-waste as electrocatalyst precursors. Comprehensive characterization techniques such as UV-Vis spectroscopy, high-resolution transmission and transmission electron microscopy (HR-TEM, TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and X-ray diffraction (XRD) are employed to evaluate the structural properties of the electrocatalyst. Electrochemical evaluation in 0.5 M KOH electrolyte by cyclic voltammetry reveals that the synthesized Aue-w/C NPs exhibit electrocatalytic activity (25.5 mA·mg-1Au) comparable to their commercially synthesized counterparts (30.1 mA·mg-1Au). This study highlights the potential for sustainable approaches in the production of electrocatalysts by utilizing e-waste as a source of valuable catalyst materials. It represents a pioneering effort in harnessing e-waste as a sustainable resource, offering new avenues for sustainable energy technologies while addressing environmental concerns and technological challenges in the field of ADMFCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.