Abstract

Acidic effluent discharged after the hydrogen fermentation of sugarcane juice was used to produce methane by batch fermentation and UASB reactor. Significant parameters affecting methane production including substrate to biomass (S/X) ratio, nickel (Ni) concentration, and cobalt (Co) concentration were optimized by response surface methodology with central composite design in batch mode. A maximum methane yield (MY) of 305.4 mL CH4/g-volatile solid (VS) substrate (sub)-added was achieved at an S/X ratio of 0.83 g-VSsub/g-VSinoculum, a Ni concentration of 0.53 mg/L, and a Co concentration of 0.06 mg/L. Continuous methane production was conducted at various hydraulic retention times (HRT) using the optimum conditions obtained from the batch experiments. The optimum HRT of 4 days in a UASB reactor resulted in a maximum methane production rate (MPR) and MY of 1.27 ± 0.05 L-CH4/L-culture day and 348 ± 13 mL-CH4/g-COD, respectively. Total energy generated was 219.23 kJ/L-substrate or 8.77 kJ/g-COD, and COD removal efficiency was 75.60%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.