Abstract

The recent discovery of methane in the martian atmosphere is arguably one of the most important discoveries in the field of astrobiology. One possible source of this methane could be a microorganism analogous to those on Earth in the domain Archaea known as methanogens. Methanogens are described as obligately anaerobic, and methods developed to work with methanogens typically include anaerobic media and buffers, gassing manifolds, and possibly anaerobic chambers. To determine if the time, effort, and supplies required to maintain anaerobic conditions are necessary to maintain viability, we compared anaerobically washed cells with cells that were washed in the presence of atmospheric oxygen. Anaerobic tubes were opened, and cultures were poured into plastic centrifuge tubes, centrifuged, and suspended in fresh buffer, all in the presence of atmospheric oxygen. Washed cells from both aerobic and anaerobic procedures were inoculated into methanogenic growth media under anaerobic conditions and incubated at temperatures conducive to growth for each methanogenic strain tested. Methane production was measured at time intervals using a gas chromatograph. In three strains, significant differences were not seen between aerobically and anaerobically washed cells. In one strain, there was significantly less methane production observed following aerobic washing at some time points; however, substantial methane production occurred following both procedures. Thus, it appears that aerobic manipulations for relatively short periods of time with at least a few species of methanogens may not lead to loss of viability. With the discovery of methane in the martian atmosphere, it is likely that there will be an increase in astrobiology-related methanogen research. The research reported here should simplify the methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call