Abstract

Methane concentrations and selected chemical parameters in interstitial water were examined along subsurface flowpath in two subsystems (hyporheic and parafluvial sediments) in the Sitka stream, Czech Republic. Interstitial methane concentrations exhibited a distinct spatial pattern. In the hyporheic downwelling zone where the sediments are relatively well oxygenated due to high hydrologic exchange with the surface water, low interstitial methane concentrations, averaging 9.3 μg CH 4/l, were found. In contrast, upwelling sediments and parafluvial sediments (active channel sediments lateral to the wetted channel) had significantly higher methane concentrations (p < 0.05, and p < 0.01, respectively), averaging 43.2 μg CH 4/l and 160.5 μg CH 4/l, respectively. Dissolved oxygen was the highest where surface water entered hyporheic/parafluvial sediments and decreased with water residence time in the sediments (p < 0.01). Nitrate concentrations decreased along the flowpath and were significantly lower at downstream end of the riffle (p < 0.001). Sulfate concentrations also show a slight decline with the water residence time, but differences were not significant. Effect of both nitrate and sulfate on methanogenesis is also discussed. The interstitial methane concentration significantly increased with surface water temperature (p < 0.001) and was negatively correlated with redox potential (p < 0.01) and dissolved oxygen (p < 0.05).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call