Abstract

Distribution of dissolved oxygen, nitrate, sulphate, carbon dioxide and dissolved organic carbon (DOC), acetate and lactate was studied in the stream and interstitial water along the subsurface flowpath in the hyporheic zone of a small lowland stream. Sediments were found to act as a source of nitrous oxide and methane. Interstitial methane concentrations were significantly much higher in comparison to those from surface water, and were significantly lower in the relatively well oxygenated downwelling zone than in the rather anoxic upwelling zone. The interstitial concentrations of O2, NO3−1 and SO4−2 showed significant decline along the subsurface flowpath, while concentrations of CO2, N2O, DOC, acetate and lactate remained unchanged. In addition to field measurements, ex situ incubation of sediments was carried out in the laboratory. Maximal methane production was found in the incubation assay using acetate (mean value 380 µg CH4 kg DW−1 d−1). Mean value of the denitrification potential was 1.1 mg N2O kg DW−1 d−1. Nitrous oxide production potential reached 71–100% of denitrification potential. Our results demonstrate that respiration of oxygen, nitrate, sulphate and methanogenesis may coexist within the hyporheic zone and that anaerobic metabolism is an important pathway in organic carbon cycling in the Sitka stream sediments. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.