Abstract

Methane conversion to C 2 hydrocarbons and hydrogen has been investigated in a needle-to-plate reactor by pulsed streamer and pulsed spark discharges and in a wire-to-cylinder dielectric barrier discharge (DBD) reactor by pulsed DC DBD and AC DBD at atmospheric pressure and ambient temperature. In the former two electric discharge processes, acetylene is the dominating C 2 products. Pulsed spark discharges gives the highest acetylene yield (54%) and H 2 yield (51%) with 69% of methane conversion in a pure methane system and at 10 SCCM of flow rate and 12 W of discharge power. In the two DBD processes, ethane is the major C 2 products and pulsed DC DBD provides the highest ethane yield. Of the four electric discharge techniques, ethylene yield is less than 2%. Energy costs for methane conversion, acetylene or ethane (for DBD processes) formation, and H 2 formation increase with methane conversion percentage, and were found to be: in pulsed spark discharges (methane conversion 18–69%), 14–25, 35–65 and 10–17 eV/molecule; in pulsed streamer discharges (methane conversion 19–41%), 17–21, 38–59, and 12–19 eV/molecule; in pulsed DBD (methane conversion 6–13%), 38–57, 137–227 and 47–75 eV/molecule; in AC DBD (methane conversion 5–8%), 116–175, 446–637, and 151–205 eV/molecule, respectively. The immersion of the γ-Al 2O 3 pellets in the pulsed streamer discharges, or in the pulsed DC DBD, or in the AC DBD has a positive effect on increasing methane conversion and C 2 yield.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call