Abstract
Solutions of H2O−NaCl−CH4 occur in fluid inclusions enclosed by quartz, apatite and feldspar from gabbroic pegmatitites, anorthositic structures and intercumulus minerals within the Skaergaard intrusion. The majority of the fluid inclusions resemble 10 μm diameter sub-to euhedral negative crystals. A vapour phase and a liquid phase are visible at room temperature, solids are normally absent. The salinity of the fluids ranges from 17.5 to 22.8 wt.% NaCl. CH4, which comprises less than six mole percent of the solution, was detected in the vapour phase of the fluid inclusions with Raman microprobe analysis. Homogenization of the fluid inclusions occurred in the liquid phase in the majority of the fluid inclusions, though 10% of the inclusions homogenized in the gas phase. Thermodynamic consideration of the stability of feldspars + quartz, and the C−O−H system, indicates that the solutions were trapped at temperatures between 655 and 770°C, at oxygen fugacities between 1.5 and 2.0 log units below the QFM oxygen buffer. Textural evidence and the composition of the solutions suggest that the fluids coexisted with late-magmatic intercumulus melts and the melts which formed gabbroic pegmatites. These solutions are thought to have contributed to late-magmatic metasomatism of the primocryst assemblages of the Skaergaard intrusion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have