Abstract

Glycol chitosan is a derivative of chitosan that is soluble at neutral pH and possesses potentially useful biological properties. With the goal of obtaining biocompatible hydrogels for use as tissue engineering scaffolds or drug delivery depots, glycol chitosan was converted to a photopolymerizable prepolymer through graft methacrylation using glycidyl methacrylate in aqueous media at pH 9. N-Methacrylation was verified by both (1)H NMR and (13)C NMR. The degree of N-methacrylation, measured via (1)H NMR, was easily varied from 1.5% to approximately 25% by varying the molar ratio of glycidyl methacrylate to glycol chitosan and the reaction time. Using a chondrocyte cell line, the N-methacrylated glycol chitosan was found to be noncytotoxic up to a concentration of 1 mg/mL. The prepolymer was cross-linked in solution using UV light and Irgacure 2959 photoinitiator under various conditions to yield gels of low sol content ( approximately 5%), high equilibrium water content (85-95%), and thicknesses of up to 6 mm. Cross-polarization magic-angle spinning (13)C solid state NMR verified the complete conversion of the double bonds in the gel. Chondrocytes seeded directly onto the gel surface, populated the entirety of the gel and remained viable for up to one week. The hydrogels degraded slowly in vitro in the presence of lysozyme at a rate that increased as the cross-link density of the gels decreased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.