Abstract
BackgroundIdentification of the cancer subtype plays a crucial role to provide an accurate diagnosis and proper treatment to improve the clinical outcomes of patients. Recent studies have shown that DNA methylation is one of the key factors for tumorigenesis and tumor growth, where the DNA methylation signatures have the potential to be utilized as cancer subtype-specific markers. However, due to the high dimensionality and the low number of DNA methylome cancer samples with the subtype information, still, to date, a cancer subtype classification method utilizing DNA methylome datasets has not been proposed.ResultsIn this paper, we present meth-SemiCancer, a semi-supervised cancer subtype classification framework based on DNA methylation profiles. The proposed model was first pre-trained based on the methylation datasets with the cancer subtype labels. After that, meth-SemiCancer generated the pseudo-subtypes for the cancer datasets without subtype information based on the model’s prediction. Finally, fine-tuning was performed utilizing both the labeled and unlabeled datasets.ConclusionsFrom the performance comparison with the standard machine learning-based classifiers, meth-SemiCancer achieved the highest average F1-score and Matthews correlation coefficient, outperforming other methods. Fine-tuning the model with the unlabeled patient samples by providing the proper pseudo-subtypes, encouraged meth-SemiCancer to generalize better than the supervised neural network-based subtype classification method. meth-SemiCancer is publicly available at https://github.com/cbi-bioinfo/meth-SemiCancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.