Abstract

본 논문에서는 극한 기계학습을 이용하는 하이브리드 균형 표본 유전자 알고리즘(hSBGA-ELM)을 기반으로 한 새로운 암 아류형 분류자를 제안하였다. 제안 된 암 아류형 분류자는 정확한 암 아류형 분류기 설계를 위해 공개 전체암지도 (Global Cancer Map)로부터 15063개의 유전자 발현 데이터를 사용합니다. 제안된 방법에서는 14가지(유방암, 전립선 암, 폐암, 대장 암, 림프종, 방광, 흑색 종, 자궁, 백혈병, 신장, 췌장, 난소, 중피종 및 CNS)의 암 아류형을 효율적으로 분류합니다. 제안 된 hSBGA-ELM은 유전자 선택 절차 및 암 아류형 분류를 하나의 프레임 워크로 단일화 한다. 제안 된 하이브리드 균형 표본 유전 알고리즘은 GCM 데이터베이스에서 이용 가능한 16,063 개의 유전자로부터 암 아류형 분류를 담당하는 축소된 강인 유전자 셋을 찾는다. 선택/축소된 유전자 세트는 익스트림 기계학습을 이용하여 암 아류형 분류기를 구성하는데 사용된다. 결과적으로, 크기가 축소된 강인 유전자 집합이 제안하는 암 아류형 분류기의 안정된 일반화 성능을 보장하게 한다. 제안 된 hSBGA-ELM은 암에 관여하는 것으로 예측되는 95개의 유전자를 발견하였으며 기존의 암 아류형 분류기와의 비교를 통해 제안 된 방법의 효율을 보여준다. In this paper a novel cancer subtype's classifier based on Hybrid Samples Balanced Genetic Algorithm with Extreme Learning Machine (hSBGA-ELM) is presented. Proposed cancer subtype's classifier uses genes' expression data of 16063 genes from open Global Cancer Map (GCM) data base for accurate cancer subtype's classification. Proposed method efficiently classifies 14 subtypes of cancer (breast, prostate, lung, colorectal, lymphoma, bladder, melanoma, uterus, leukemia, renal, pancreas, ovary, mesothelioma and CNS). Proposed hSBGA-ELM unifies genes' selection procedure and cancer subtype's classification into one framework. Proposed Hybrid Samples Balanced Genetic Algorithm searches a reduced robust set of genes responsible for cancer subtype's classification from 16063 genes available in GCM data base. Selected reduced set of genes is used to build cancer subtype's classifier using Extreme Learning Machine (ELM). As a result, reduced set of robust genes guarantees stable generalization performance of the proposed cancer subtype's classifier. Proposed hSBGA-ELM discovers 95 genes probably responsible for cancer. Comparison with existing cancer subtype's classifiers clear indicates efficiency of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.