Abstract
Objective To observe whether metformin (MET) plays a protective role in acute lung injury (ALI) induced by paraquat (PQ) poisoning in rats by activating the AMPK/NF-κB signaling pathway. Methods PQ exposure was used to construct a rat model of ALI and a model of acute type II alveolar epithelial cell (RLE-6TN) injury, and MET intervention was performed. Rat lung tissue samples were collected to evaluate pathological changes in rat lung tissue, the oxidation index, and inflammatory factors; cell viability was detected by CCK-8 assays, and the protein expression levels of phospho-AMPK and phospho-NF-κBp65 in rat lung tissue and RLE-6TN cells were observed by Western blotting. Results Compared with the PQ group, the MET treatment group showed significantly (1) reduced lung wet/dry ratio (W/D: 4.67 ± 0.31 vs. 5.45 ± 0.40, P < 0.001), (2) reduced pathological changes in lung tissue, (3) decreased MDA levels (nmol/mg prot: 2.70 ± 0.19 vs. 3.08 ± 0.15, P < 0.001) and increased SOD and GSH-Px activities (U/mg prot: 76.17 ± 5.22 vs. 45.23 ± 6.58, 30.40 ± 2.84 vs. 21.00 ± 3.20; all P < 0.001) in lung tissue homogenate, (4) reduced levels of IL-1β, IL-6, and TNF-α in lung tissue homogenates (pg/mL: 47.87 ± 5.06 vs. 66.77 ± 6.55; 93.03 ± 7.41 vs. 107.39 ± 9.81; 75.73 ± 6.08 vs. 89.12 ± 8.94; all P < 0.001), (5) increased activity of RLE-6TN cells (%: 0.69 ± 0.09, 0.76 ± 0.06, and 0.58 ± 0.03 vs. 0.50 ± 0.05; all P < 0.05), (6) decreased protein levels of phospho-NF-κBp65 in lung homogenates and RLE-6TN cells (p-NF-κB/NF-κB: 0.47 ± 0.09 vs. 0.81 ± 0.13; 0.26 ± 0.07 vs. 0.79 ± 0.13; all P < 0.01), and (7) upregulated protein expression of phospho-AMPK in lung homogenates and RLE-6TN cells (p-AMPK/AMPK: 0.88 ± 0.05 vs. 0.36 ± 0.12; 0.93 ± 0.03 vs. 0.56 ± 0.15; all P < 0.01). After the addition of the AMPK inhibitor Compound C (Com C), the protein expression levels of phospho-AMPK and phospho-NF-κBp65 returned to baseline. Conclusion MET can effectively alleviate ALI induced by paraquat poisoning and increase the viability of cells exposed to paraquat. The mechanism may be related to the activation of the AMPK/NF-κB pathway, downregulation of inflammatory mediators such as IL-6 and TNF-α, and upregulation of the SOD and GSH-Px oxidation index, and these effects can be inhibited by the AMPK inhibitor Com C.
Highlights
Paraquat (PQ, 1,1-dimethyl-4,4-bipyridinium dichloride) belongs to the class of bipyridine herbicides
The results showed that the lung wet/dry ratio was significantly increased in the PQ group compared with the control group (P < 0:001) and was lower in the PQ+MET group than in the PQ group (P < 0:001)
It is believed that the mechanism of damage by PQ poisoning mainly involves oxidative stress, mitochondrial damage, immune activation, and inflammatory mediators [4]
Summary
Paraquat (PQ, 1,1-dimethyl-4,4-bipyridinium dichloride) belongs to the class of bipyridine herbicides. PQ poisoning is still a major problem in the field of emergency medical research, and it is an important public health problem
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have