Abstract
Atmospheric fine particulate matter (PM2.5) is a human health risk factor, but its ambient concentration depends on both precursor emissions and meteorology. While emission reductions are used to set PM2.5-related health policies, the effect of meteorology is often overlooked. To explore this aspect, we examined PM2.5 interannual variability (IAV) associated with meteorological parameters using the long-term simulation from the Community Earth System Model (CESM1), a global climate-chemistry model, with fixed emissions. The results are subsequently contrasted with the MERRA-2 reanalysis dataset, which inherently considers emission and meteorology effects. Over continental East Asia, the CESM1 domain-average PM2.5 IAV is 6.7 %, mainly attributed to humidity, precipitation, and ventilation variation. The grid-cell PM2.5 IAVs over southern East China are larger, up to 12 % due to the more substantial influence of El Niño-induced meteorological anomalies. Under such climate extreme, sub-regional PM2.5 concentration may occasionally exceed WHO air quality guideline levels despite the compliance of the long-term mean. The simulated PM2.5 IAV over continental East Asia is ~25 % of that derived from the MERRA-2 data, which highlights the influence of both emission and meteorology-driven variations and trends inherent in the latter. Although emission-driven variability is significant to PM2.5 IAV, in remote areas downwind of major source regions in East Asia, North America, and Western Europe, the MERRA-2 data revealed that meteorological variations contributed more to PM2.5 IAV than emission variations. Thus, when setting policies for complying with the WHO PM2.5-related air quality guideline levels, the highest annual PM2.5 associated with climate extremes should be considered instead of that based on average climate conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.