Abstract

Anomalies in isotopic abundances of Mo and Ru in solar system matter were found to document variable contributions of the nucleosynthetic s-process component. We report isotopic relations of ϵ 92Mo versus ϵ 100Ru in meteorites from chondritic parent bodies, iron meteorites, and achondrites that reveal deviations from expected s-process abundance variations. We show that two p-process isotopes 92Mo and 94Mo require the presence of distinct p-process components in meteoritic materials. The nucleosynthetic origin of abundant magic (N = 50) p-process nuclides, covering the mass range of Zr, Mo, and Ru, has long been an enigma, but contributions by several recognized pathways, including alpha and νp-antineutrino reactions on protons, may account for the observed relatively large solar system abundances. Specific core-collapse supernovae explosive regions may carry proton-rich matter. Since Mo and Ru isotopic records in solar system matter reveal the presence of more than one nucleosynthetic p-process component, these records are expected to be helpful in documenting different explosive synthesis pathways and the implied galactic evolution of p-nuclides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.