Abstract

Abstract. Meteoroids traversing the E-region ionosphere leave behind extended columns of elevated ionization known as the meteor plasma trails. To accurately interpret radar signals from trails and use them for diagnostics, one needs to model plasma processes associated with their structure and evolution. This paper describes a 3-D quantitative theory of the electrostatic interaction between a dense plasma trail, the ionosphere, and a DC electric field driven by an external dynamo. A simplified water-bag model of the meteor plasma shows that the highly conducting trail efficiently short-circuits the ionosphere and creates a vast region of currents that flow through and around the trail. We predict that the trail can induce electric fields reaching a few V/m, both perpendicular and parallel to the geomagnetic field. The former may drive plasma instabilities, while the latter may lead to strong heating of ionospheric electrons. We discuss physical and observational implications of these processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.