Abstract

In the present study we have tried to explore the effect of static external electric field of strength 3.0 V/nm on the conformational changes adopted by the protein β-lactoglobulin. We have chosen different temperatures viz. 300 K, 400 K and 450 K to evaluate the temperature dependent effect of electric field. We have observed that combined effect of high temperature and static external electric field show significant changes on the structural conformation of the protein which in turn may affect the functional properties of the protein. Calculations of root mean square deviations reveal that both helical and β-sheet regions of the protein are noticeably affected at high temperature. We have used solvent accessible surface area (SASA) and dipole moment values to explain that there is changes in hydrophobicity of the protein surface due to presence of external electric field. The study reveals that electric field in combination with high temperature can be used to alter the conformation of the protein and the effect of external electric field is more pronounced at high temperature than that of low temperature. The study provides a better understanding of the conformational changes adopted by the protein under the stress of external electric field and high temperature and provide guidance to choose optimum conditions for processing without loss of nutritional properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call