Abstract

AbstractIn this paper, a metasurface (MS)-based multi-functional electromagnetic (EM) structure is proposed to realize its two different applications, namely absorption and radiation. The proposed structure is based on periodic arrays of disk-shaped metallic patches and split rings with four embedded lumped resistors. The metallic vias are inserted from top to bottom to connect the disk-shaped patches with a feeding network designed on the bottom layer where two p-i-n switches are embedded in the feeding network to alter the different functions of the proposed structure. For free space incident plan wave, the designed structure works as an absorber when the p-i-n switches are switched OFF. The absorber operates over a frequency band from 6.2 GHz to 8.2 GHz and unchanged over an incident angle from 0° to 30° for both TE and TM polarized incident waves. The same structure also works as a low scattering and high gain radiator when the p-i-n switches are turned ON and radiate within absorbing frequency band, i.e. from 7.5 to 8.0 GHz. The designed structure is fabricated and experimentally verified for EM absorption and radiation applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call