Abstract

Abstract Normally, the reported gain of the microstrip patch antenna is within 8 dBi. Using properly located three shorting pins on three bisectors, the present work reports a method to convert the non-radiating TM11 mode of equilateral triangular patch antennas (ETPAs) to a deformed TM11 radiating mode. The boresight gain of ETPA operating in TM11 mode is enhanced from −10.75 to 12.1 dBi at 5.43 GHz. The boresight measured gain is further enhanced to 14.2 dBi at 5.52 GHz by using a triangular surface-mounted short horn (SMSH) of about ${{\lambda }}/5$ height. The aperture efficiency of the ETPA with the shorting pins is 84.2%. The aperture efficiency is further improved to 94.2% using the SMSH. The measured boresight cross-polarization and side-lobe level are −40 and −29 dB, respectively. The nature of the electricfield and surface current distribution is analyzed, using both the characteristic mode analysis method and high-frequency structure simulator, to understand the role of shorting pin and coaxial feed in converting the non-radiating TM11 mode to the radiating mode. A systematic design process also is presented for a fast design of shorting pin-loaded ETPA on the suitable substrate at a specified frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call