Abstract
Reduction is an operation performed on the values of two or more key-value pairs that share the same key. Reduction of sparse data streams finds application in a wide variety of domains such as data and graph analytics, cybersecurity, machine learning, and HPC applications. However, these applications exhibit low locality of reference, rendering traditional architectures and data representations inefficient. This article presents MetaStrider, a significant algorithmic and architectural enhancement to the state-of-the-art, SuperStrider. Furthermore, these enhancements enable a variety of parallel, memory-centric architectures that we propose, resulting in demonstrated performance that scales near-linearly with available memory-level parallelism.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have