Abstract
The possibility that supersymmetry (SUSY) could be broken in a metastable vacuum has recently attracted renewed interest. In these proceedings we will argue that metastability is an attractive and testable scenario. The recent developments were triggered by the presentation of a simple and calculable model of metastable SUSY breaking by Intriligator, Seiberg and Shih (ISS), which we will briefly review. One of the main questions raised by metastability is, why did the universe end up in this vacuum. Using the ISS model as an example we will argue that in a large class of models the universe is automatically driven into the metastable state during the early hot phase and gets trapped there. This makes metastability a natural option from the cosmological point of view. However, it may be more than that. The phenomenologically required gaugino masses require the breaking of R-symmetry. However, in scenarios with a low supersymmetry breaking scale, e.g., gauge mediation a powerful theorem due to Nelson and Seiberg places this at odds with supersymmetry breaking in a truely stable state and metstability becomes (nearly) inevitable. Turning around one can now experimentally test whether gauge mediation is realised in nature thereby automatically testing the possibility of a metastability of the vacuum. Indeed, already the LHC may give us crucial information about the stability of the vacuum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.