Abstract

In half-filled high Landau levels, two-dimensional electron systems possess collective phases which exhibit a strongly anisotropic resistivity tensor. A weak, but as yet unknown, rotational symmetry-breaking potential native to the host semiconductor structure is necessary to orient these phases in macroscopic samples. Making use of the known external symmetry-breaking effect of an in-plane magnetic field, we find that the native potential can have two orthogonal local minima. It is possible to initialize the system in the higher minimum and then observe its relaxation toward equilibrium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call