Abstract

Complex environments in advanced manufacturing usually involve ultrafast laser or ion irradiation which leads to rapid heating and cooling and drives grain boundaries (GBs) to non-equilibrium states, featuring distinct energetics and kinetic behaviors compared to conventional equilibrium or near-equilibrium GBs. In this topical review, we provide an overview of both recent experimental and computational studies on metastable GBs, i.e. their energetics, kinetic behaviors, and mechanical properties. In contrast to GBs at thermodynamic equilibrium, the inherent structure energy of metastable GBs exhibits a spectrum instead of single value for a particular misorientation, due to the existence of microstructural and chemical disorder. The potential energy landscape governs the energetic and kinetic behaviors of metastable GBs, including the ageing/rejuvenating mechanism and activation barrier distributions. The unique energetics and structural disorder of metastable GBs lead to unique mechanical properties and tunability of interface-rich nanocrystalline materials. We also discuss that, in addition to structural disorder, chemical complexity in multi-components alloys could also drive the GBs away from their ground states and, subsequently, significantly impact on the GBs-mediated deformation. And under some extreme conditions such as irradiation, structural disorders and chemical complexity may simultaneously present at interfaces, further enriching of metastability of GBs and their physical and mechanical behaviors. Finally, we discuss the machine learning techniques, which have been increasingly employed to predict and understand the complex behaviors of metastable GBs in recent years. We highlight the potential of data-driven approaches to revolutionize the study of disorder systems by efficiently extracting the relationship between structural features and material properties. We hope this topical review paper could shed light and stimulate the development of new GBs engineering strategies that allow more flexibility and tunability for the design of nano-structured materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call