Abstract

Nonequilibrium relaxations in a multiplicity of tilted grain boundaries (GBs) subjected to ultrafast thermal driving forces are investigated by atomistic modeling. By scrutinizing the intermediate metastable microstates and their assessable activation barriers in the underlying energy landscape, we demonstrate the energetics and atomic diffusions in tilted metastable GBs are disorder-driven rather than free volume-driven. A critical transition temperature is identified, separating the nonequilibrium GBs’ evolution into a fast-varying stage, and a tuning-ineffective stage, respectively. We further discover a universal correlation between such critical temperature and GBs’ inherent structure energy, which enables predicting the tunability of metastable GBs’ kinetic and mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.