Abstract
Systematic studies of the metastability exchange optical pumping (MEOP) process in 3He gas at high magnetic fields (0.45, 0.9, 1.5, and 2 T) and pressures (32 and 64 mbar) are performed. The impact of experimental parameters such as laser power, beam profile, and shape of the pumping cell is evaluated. By varying the discharge intensity in the cell, the density of metastable state atoms and the plasma-induced nuclear relaxation rate are also controlled, and their effect on the MEOP efficiency can be investigated. Very accurate experimental results are obtained, opening the way to quantitative tests of a recently proposed model of the MEOP process at high magnetic field. We report selected MEOP results with nuclear polarizations exceeding 50 % at 64 mbar and 2 T, which represents a dramatic improvement in performances over MEOP at low magnetic field. The present findings suggest that still higher polarizations can be achieved in higher magnetic fields, and motivate investigations at higher gas pressures. New ways of producing hyperpolarized 3He for magnetic resonance imaging and medical applications can be envisaged, as most clinical whole-body scanners operate at 1.5 T.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have