Abstract
Garnet-bearing orthopyroxenites occur as both discrete xenoliths and as veinlets in peridotite xenoliths that were brought to the surface by Quaternary Pali Aike alkali basalts in the southernmost of the Patagonian plateau lava fields in southern South America. Orthopyroxenites commonly contain Ti-rich minerals and also relict grains of olivine (Ol) and clinopyroxene (Cpx) occurring as inclusions in secondary orthopyroxene (Opx). The secondary Opx contains high TiO2 (0.20–0.59 wt.%), moderate Al2O3 (2.87–5.10 wt.%) and low magnesium numbers (Mg#, 84.5–89.2) compared with Opx in garnet-bearing peridotites. This suggests that secondary Opx formed at the expense of Ol and Cpx during metasomatism by an evolved Ti-rich melt. The orthopyroxenites contain bulk-rock concentrations of Cr, Ni and platinum group elements similar to peridotites, suggesting that these metals were essentially immobile during metasomatism, and that the metasomatizing melt did not introduce these elements. Instead, the metasomatizing melt contributed alkalis, Ti, Si, Al, and S to the orthopyroxenites based on increased concentrations of these elements and mineralogy. Secondary Opx has also been documented in mantle peridotite xenoliths derived from beneath both active arcs and ancient cratons. In comparison with such Opx in these mantle samples, the secondary Opx in the Pali Aike xenoliths contains relatively high Ti and Al and low Mg. High Ti and low Mg in these samples reflect the evolved nature of the metasomatizing melt that originated from the underlying asthenospheric mantle. The type of secondary Opx, typified by these samples, may be common elsewhere in subcontinental mantle lithosphere (SCLM) affected by asthenospheric upwelling.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have