Abstract
We report on the progress on a first generation of realistic size metascintillators for time-of-flight PET. These heterostructures combine dense LYSO or BGO plates, interleaved with fast scintillator layers producing a bunch of prompt photons from the energy leakage of the recoil photoelectric electron. From a Geant4 simulation of the energy sharing distribution between the dense and the fast scintillator on 42 LYSO-based and 42 BGO-based configurations, a detailed study of the timing performance has been performed on a selection of the most promising 12 LYSO-based and 14 BGO-based metascintillators. A Monte Carlo simulation was first performed to extrapolate from direct measurements of the performance of the metascintillator components, the detector time resolution (DTR), and sensitivity on the basis of the simulated amount of energy leakage to the fast scintillator. An analytic algorithm was then applied to determine an equivalent coincidence time resolution (CTR) from the random association of the DTR distributions from two metapixels in coincidence. This equivalent CTR is calculated in order to obtain the same variance in the reconstructed image as the combination of the DTR distributions of 2 metapixels. Preliminary results confirm that with these simple and still nonoptimized configurations, an equivalent CTR of 150 ps for BGO-based and 140 ps for LYSO-based metapixels of realistic size can be obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Radiation and Plasma Medical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.