Abstract

Five metal-organic frameworks (MOFs) formed by [WS(4)Cu(x)](x-2) secondary building units (SBUs) and multi-pyridyl ligands are presented. The [WS(4)Cu(x)](x-2) SBUs function as network vertexes showing various geometries and connectivities. Compound 1 contains one-dimensional channels formed in fourfold interpenetrating diamondoid networks with a hexanuclear [WS(4)Cu(5)](3+) unit as SBU, which shows square-pyramidal geometry and acts as a tetrahedral node. Compound 2 contains brick-wall-like layer also with a hexanuclear [WS(4)Cu(5)](3+) unit as SBU. The [WS(4)Cu(5)](3+) unit in 2 is a new type of [WS(4)Cu(x)](x-2) cluster unit in which the five Cu(+) ions are in one plane with the W atom, forming a planar unit. Compound 3 shows a nanotubular structure with a pentanuclear [WS(4)Cu(4)](2+) unit as SBU, which is saddle-shaped and acts as a tetrahedral node. Compound 4 contains large cages formed between two interpenetrated (10,3)-a networks also with a pentanuclear [WS(4)Cu(4)](2+) unit acting as a triangular node. The [WS(4)Cu(4)](2+) unit in 4 is isomeric to that in 3 and first observed in a MOF. Compound 5 contains zigzag chains with a tetrahedral [WS(4)Cu(3)](+) unit as SBU, which acts as a V-shaped connector. The influence of synthesis conditions including temperature, ligand, anions of Cu(I) salts, and the ratio of [NH(4)](2)WS(4) to Cu(I) salt on the formation of these [WS(4)Cu(x)](x-2)-based MOFs were also studied. Porous MOF 3 is stable upon removal and exchange of the solvent guests, and when accommodating different solvent molecules, it exhibits specific colors depending on the polarity of incorporated solvent, that is, it shows a rare solvatochromic effect and has interesting prospects in sensing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call