Abstract

In this article, we discuss parameters influencing (a) the properties of thin AlxGa1−xN layers grown by metalorganic chemical vapor deposition and (b) the electrical properties of the two-dimensional electron gas (2DEG) forming at the AlxGa1−xN/GaN heterojunction. For xAl>0.3, the AlxGa1−xN layers showed a strong tendency towards defect formation and transition into an island growth mode. Atomically smooth, coherently strained AlxGa1−xN layers were obtained under conditions that ensured a high surface mobility of adsorbed metal species during growth. The electron mobility of the 2DEG formed at the AlxGa1−xN/GaN interface strongly decreased with increasing aluminum mole fraction in the AlxGa1−xN layer and increasing interface roughness, as evaluated by atomic force microscopy of the surfaces prior to AlxGa1−xN deposition. In the case of modulation doped structures (GaN/AlxGa1−xN/AlxGa1−xN:Si/AlxGa1−xN), the electron mobility decreased with decreasing thickness of the undoped spacer layer and increasing silicon doping. The electron mobility was only moderately affected by the dislocation density in the films and independent of the growth temperature of the AlxGa1−xN layers at xAl=0.3. For Al0.3Ga0.7N/GaN heterojunctions, electron mobility values up to 1650 and 4400 cm2/V s were measured at 300 and 15 K, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call