Abstract

Metal-mediated base pairs can be considered conjugates of nucleic acids with metal complexes. They are formed by a formal substitution of hydrogen bonds between complementary nucleobases by coordinate bonds. As a result, metal ions are introduced into nucleic acid helices along the helix axis. Metal-mediated base pairs can hence be used for the site-specific decoration of nucleic acids with transition metal ions. They have found applications in DNA nanotechnology, in sensors, and in responsive nucleic acid systems, to name just a few. Typical ligands in metal-mediated base pairs can be canonical nucleobases (particularly thymine and cytosine), but in addition numerous examples exist of the use of artificial nucleobases. Moreover, metal-mediated base pairs are not limited to the naturally occurring nucleic acids DNA and RNA, but have also been established with synthetic nucleic acid analogs. This article summarizes the efforts made in the field of metal-mediated base pairing since the discovery of the first metal-mediated base pair in the 1960s. It lists all ligands reported in the context of metal-mediated base pairing and correlates them with their preferably coordinated metal ions. A particular focus is given to the spectroscopic and spectrometric characterization of the metal-modified nucleic acids. For the first time, a comprehensive overview is given of all metal-mediated base pairs, the experimental conditions under which they were established, and the experimental techniques used to prove their existence. In addition, all experimental nucleic acid duplex structures involving metal-mediated base pairs are presented and discussed. The article covers metal-mediated base pairs reported until early 2021. It is intended to aid scientists interested in this fascinating field at the border of bioinorganic chemistry and supramolecular coordination chemistry in developing it even further.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.