Abstract

AbstractThe volume fraction, dissolution, and segregation of WC particles in metal-matrix composites (MMCs) are critical to their wear resistance. Low carbon steel substrates were precoated with NiCrBSi coatings and processed with gas tungsten arc melt injection method to fabricate MMCs with high volume fraction of WC particles. The microstructures and wear resistance of the composites were investigated. The results showed that the volume fraction of WC particles increased with decreasing hopper height and was as high as 44% when hopper height was 100 mm. The dissolution of WC particles was minimal. The content of the alloying elements decreased from the top to the bottom of the matrix. More WC particles dissolved in the overlapping area, where Fe3W3C carbide blocks could be found. The wear loss of the MMCs after 40 min was 6.9 mg, which is 76 times less than that of the substrate after the 4 min test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call