Abstract

The electrical transport properties of Mg2Ge under high pressure were studied with the in situ temperature-dependent resistivity and Hall-effect measurements. The theoretically predicted metallization of Mg2Ge was definitely found around 7.4 GPa by the temperature-dependent resistivity measurement. Other two pressure-induced structural phase transitions were also reflected by the measurements. Hall-effect measurement showed that the dominant charge carrier in the metallic Mg2Ge was hole, indicating the “bad metal” nature of Mg2Ge. The Hall mobility and charge carrier concentration results pointed out that the electrical transport behavior in the antifluorite phase was controlled by the increase quantity of drifting electrons under high pressure, but in both anticotunnite and Ni2In-type phases it was governed by the Hall mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.