Abstract
Due to the high specific capacity and low open circuit voltage (OCV), 2D siligraphene has been widely considered as a promising anode material for metal ion batteries (MIBs). Nonetheless, its electrochemical performance is greatly impeded by low mechanical stiffness, poor hopping dynamics and small pore size. Motivated by the great success of 3D carbon materials, we propose a metallic porous 3D-SiC anode using the corresponding 2D tetragonal SiC as a structural unit. By first principles molecular dynamics, mechanical property and phonon spectrum calculations, it is found that 3D-SiC possesses good thermal, mechanical and dynamical stability. The maximum Young’s and bulk moduli of 3D-SiC are 217.16, 400.90 GPa, respectively, exhibiting a moderate mechanical stiffness. More importantly, the intrinsically high electrical conductivity, unique porous structure and low mass density make the 3D-SiC a promising anode candidate for Li/Na/K-ion batteries with small volume changes (6.43 %, 3.75 % and 8.66 %), low diffusion barriers (0.17, 0.19 and 0.017 eV), high storage capacities (947, 947 and 724 mA h/g) and low average OCVs (0.56, 0.34 and 0.11 V). The encouraging results show that siligraphene-based porous 3D anodes are worthy of further investigation for MIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.