Abstract

In this paper, the fluidized bed dry impregnation of coarse alumina porous particles by a metallic salt, manganese nitrate, is investigated. In this technique the penetration of each drop of metallic solution in the porous solid particle and solvent evaporation takes place at the same time, then liquid diffusion phenomenon is negligible. So, the metal loading is directly related to the operating time and liquid flow rate and concentration. It is found that the competition between two phenomena, drying and capillary flow, controls the deposit location. In order to determine the importance of the solvent evaporation process compared to the solution penetration by capillarity, an impregnation module, IM, was defined as the ratio between the drying characteristic time and a capillary penetration time. The adequate choice of the operating conditions (bed temperature, liquid and fluidization gas flow rate) allows a uniform deposition of the metallic precursor inside the porous matrix or on the support surface. The impregnation under slow drying conditions (IM ≥ 10 and solvent content in the bed atmosphere τ s ≥ 0.2) leads to a homogeneous deposition inside the pores. Under fast drying conditions (IM < 5 and τ s < 0.2), the deposit is located at the particle external surface. In the case of slow drying, the impregnation kinetics can be represented by a “shrinking core” model. The critical impregnation rate is controlled by the competition between dissolution and recrystallization at the elementary grain scale. The size of the metal crystallites depends on the pore mean size and size distribution and on the drying rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.