Abstract
Electrodes modified with carbon nanomaterials find wide ranging applications in electrochemistry such as in energy generation and storage through to applications in electroanalysis. A substantial limitation is the presence of metallic impurities which vary between batches and can produce erroneous results. Consequently we have explored the electrochemical properties of metallic impurity free carbon nanotube paste electrodes using potassium ferrocyanide and hydrogen peroxide as model compounds. In terms of the latter utilising cyclic voltammetry, a linear range from 0.75 to 3 mM with a limit of detection of 0.19 mM is possible using the electrochemical oxidation of hydrogen peroxide while using the electrochemical reduction of the target analyte, a linear range from 0.5 to 249 mM is possible with a detection limit of 0.43 mM. The ultra-small size of the carbon nanotubes and fabrication methodology result in a tightly bound carbon nanotube electrode surface which does not exhibit thin-layer behaviour resulting in highly reproducible electrodes with the %RSD found to be 5.5%. These analytical ranges, detection limits and reproducibility are technologically useful. The carbon nanotubes utilised are completely free from metallic impurities and do not require lengthy processing to remove impurities and consequently have no variation in the purity of the nanomaterial between batches as is commonly the case for other available carbon nanotube material. The impurity free nature of this nanomaterial allows for highly reproducible and intelligent sensors based on carbon nanotubes to be understood and realised for the first time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.