Abstract

Metallic hydrogen (MH) has been predicted to be metastable, a high temperature superconductor, and a powerful rocket propellant. If true, MH could have an enormous impact on society. We have produced MH in a diamond anvil cell and studied its metastability. At a temperature of 5 K, the load on the metallic hydrogen was stepwise reduced until the pressure was essentially zero. While turning the load or pressure down, the sample evidently transformed to the molecular phase and escaped; the hole in the gasket containing the MH closed. We were unable to determine this value of the metastability pressure. Metallic hydrogen was not observed to be metastable at zero pressure, with no uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.