Abstract

ABSTRACT Hydrogen is the simplest molecule in nature. One of the key problems and challenges in condensed matter physics is to understand the phases, properties, and structure of hydrogen as a function of pressure and temperature. Over 80 years ago Wigner and Huntington predicted that if solid molecular hydrogen was sufficiently compressed, it would transform to an atomic metal. Later, a second pathway emerged; it was predicted that if heated to high temperatures under pressure it would transform to liquid atomic hydrogen; this form of metallic hydrogen makes up ~90% of the planet Jupiter. The prediction of high temperature superconductivity of solid atomic metallic hydrogen stimulated the experimental community to produce this material . For decades hydrogen defied the experimental efforts to transform it. Using diamond anvil cells, metallic hydrogen has recently been produced at a pressure of ~5 million atmospheres, significantly greater than the pressure at the center of the earth. Liquid atomic metallic hydrogen has been produced at temperatures of a few thousand degrees Kelvin in diamond anvil cells, as well as in dynamic experiments. We review the seemingly simple, but actually complex properties of this quantum solid and metal and the decades of development and progress to achieve this important fundamental result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call