Abstract

ABSTRACTAeolian dust episodes (ADEs) have been an emergency disaster in the Kaoping River Valley during the rainy season (May-September), which can severely deteriorate ambient particulate air quality in the region surrounding the Kaoping River. Thus, this study aims to characterize the metallic fingerprint of Aeolian dust (AD) and investigate the effects of ADEs on ambient particulate air quality along the Kaoping River Valley. Four manual sampling sites adjacent to the riverside were selected to collect fine (PM2.5) and coarse (PM2.5–10) aerosol samples during and after the ADEs in the periods of six events. A total of 13 metallic elements were analyzed using an inductively coupled plasma-atomic emission spectrometer. With metallic elements analysis and nonparametric statistical methods of Wilcoxon rank-sum test and Kruskal-Wallis test, this study successfully derived the metallic indicators of ADEs. The mass ratios of crustal elements (Fe, Ca, or Al) to reference element (Cd) obtained during the ADEs were much higher than those obtained after the ADEs. High mass ratios of Fe/Cd, Ca/Cd, and Al/Cd in PM2.5-10 were observed on the influenced areas of ADEs. Among them, (Fe/Cd)2.5-10 was proven as the best indicator which can be applied to effectively validate the existence of ADEs and evaluate their influences on ambient air quality. Moreover, PM2.5 concentrations during the ADEs were 3-3.6 fold higher than those after the ADEs. PM2.5 should be a contributor to AD, even though the mass ratios of PM2.5/PM10 ranged from 0.05 to 0.20 during the ADEs. Our findings provide valuable information regarding the characteristics of the AD during the ADEs in the Kaoping River.Implications: Indicators of (Fe/Cd)2.5-10 are approximately applied to observe the effects of ADEs. Local governments could realize the mechanisms of S- and NW-type aeolian dust episodes (ADEs). They can cause deterioration in different ways for the regional air quality surrounding Kaoping River Valley. Residents who have been living in the influenced areas can take precautions to prevent damage from aeolian dust. Strategies for curbing ADEs must reduce the area of bare lands by artificial measures in the long period of the sunny days during the rainy season. Future research should examine physical conditions of topsoils and other chemical composition in aeolian dust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.