Abstract
Two-dimensional (2D) nanomaterials are attracting much attention due to their excellent electronic and optical properties. Here, we report the first experimental preparation of two free-standing mercurated graphyne nanosheets via the interface-assisted bottom-up method, which integrates both the advantages of metal center and graphyne. The continuous large-area nanosheets derived from the chemical growth show the layered molecular structural arrangement, controllable thickness and enhanced π-conjugation, which result in their stable and outstanding broadband nonlinear saturable absorption (SA) properties (at both 532 and 1064 nm). The passively Q-switched (PQS) performances of these two nanosheets as the saturable absorbers are comparable to or higher than those of the state-of-the-art 2D nanomaterials (such as graphene, black phosphorus, MoS2 , γ-graphyne, etc.). Our results illustrate that the two metallated graphynes could act not only as a new class of 2D carbon-rich materials, but also as inexpensive and easily available optoelectronic materials for device fabrication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.