Abstract

We investigate a disordered two-dimensional lattice model for noninteracting electrons with long-range power-law transfer terms and apply the method of level statistics for the calculation of the critical properties. The eigenvalues used are obtained numerically by direct diagonalization. We find a metal-insulator transition for a system with orthogonal symmetry. The exponent governing the divergence of the correlation length at the transition is extracted from a finite size scaling analysis and found to be $\ensuremath{\nu}=2.6\ifmmode\pm\else\textpm\fi{}0.15.$ The critical eigenstates are also analyzed and the distribution of the generalized multifractal dimensions is extrapolated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.