Abstract

Metal-Chelating Peptides (MCPs), obtained from protein hydrolysates, present various applications in the field of nutrition, pharmacy, cosmetic etc. The separation of MCPs from hydrolysates mixture is challenging, yet, techniques based on peptide-metal ion interactions such as Immobilized Metal Ion Affinity Chromatography (IMAC) seem to be efficient. However, separation processes are time consuming and expensive, therefore separation prediction using chromatography modelling and simulation should be necessary. Meanwhile, the obtention of sorption isotherm for chromatography modelling is a crucial step. Thus, Surface Plasmon Resonance (SPR), a biosensor method efficient to screen MCPs in hydrolysates and with similarities to IMAC might be a good option to acquire sorption isotherm. This review highlights IMAC experimental methodology to separate MCPs and how, IMAC chromatography can be modelled using transport dispersive model and input data obtained from SPR for peptides separation simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.