Abstract

We have developed a titanium (Ti)-based piezoelectric microelectromechanical systems scanner driven by a Pb(Zr, Ti)O3 (PZT) thin film for the development of laser scanning displays. The 2-μm-thick PZT thin film was directly deposited on a 50-μm-thick Ti substrate by radio frequency magnetron sputtering. Prior to PZT deposition, the Ti substrate was microfabricated into the shape of a horizontal scanner by wet etching; therefore, we could fabricate a piezoelectric microactuator without using the photolithography process. We confirmed the growth of the polycrystalline PZT film with perovskite structures on the Ti substrate. We achieved an optical scanning angle of 22° at a resonant frequency of 25.4 kHz using a driving voltage of 20 V pp. These horizontal scanning properties can be applicable for laser displays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.