Abstract
Layered double hydroxides (LDH) have been proposed as the materials that offer the best performance in the moderate-temperature range, between 200 and 450 °C, for CO2 adsorption, so the effect of some synthesis parameters and surface modification on their adsorption capacities is herein investigated. This work reports the use of M2+ (Co, Mg, Ni and Zn)/Al layered double hydroxides synthesized with a 3:1 molar ratio by the co-precipitation method and using aluminum extracted from saline slags as source of this metal as CO2 adsorbents. The synthesis and use of Zn/TiAl is also reported considering several proportions of Al-Ti. Structural characterization and comparison of the series has been achieved using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), nitrogen physisorption at 196 °C and thermogravimetry measurements (TGA). The performance of calcined LDH as CO2 adsorbents was evaluated in the 50 – 400 °C temperature range and 80 kPa and results show that Ni6Al2 and Mg6Al2 samples present a significant adsorption capacity at low temperature (0.382 and 0.292 mmolCO2/g, respectively). At 400 °C only Mg6Al2 maintains its high adsorption capacity (0.275 mmolCO2/g) compared to the other calcined LDH. Its adsorption capacity at moderate-temperature range was proven to be better than that of a commercial Mg6Al2 sample. In all materials the CO2 adsorption capacity at 200–450 °C increased by incorporating potassium (K2CO3 and KOH as sources) up to 0.58 mmolCO2/g for Mg6Al2 +K2CO3. The addition of the amine TEPA in the low-temperature range worked for Co6Al2 and Mg6Al2 (increment > 40 %). In the case of Zn6Al2, the partial substitution of Al by Ti also increased the CO2 adsorption capacity from 0.177 to 0.244 mmolCO2/g, finding isosteric heats between 17.07 and 23.30 kJ/mol using the Clausius-Clapeyron equation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have