Abstract
The structural and bonding properties of Bi and Ac complexes with cyclen-based chelating ligands have been studied using relativistic DFT calculations in conjunction with TZ2P all-electron basis sets. Besides the parent cyclen ligand, the study has covered its extensions with pyridine-type (Lpy), carboxylate (DOTA, DOTPA), picolinate (MeDO2PA) and phosphonate (DOTMP) pendant arms. The effect of the cyclen ring size has been probed by increasing it from [12]aneN4 to [16]aneN4. Additional extensions in the DOTA complexes included the H2O ligand at the 9th coordination site as well as the p-SCN-Bn substituent (a popular linker to the targeting vector). The study focuses on the complex stability, the nature of bonding and the differences between Ac and Bi in the complexes. The metal–ligand interactions have been analysed by the Extended Transition State method combined with Natural Orbitals of Chemical Valence theory and Quantum Theory of Atoms in Molecules models.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have