Abstract

A laboratory study was conducted to investigate metal transport and accumulation within soils contaminated with As, Cr, and Cu from CCA-treated wood leachates. New blocks of CCA-treated wood were leached using synthetic rainwater. Soil columns were constructed and filled with three different soils, including a sandy soil, an organic soil and a clay soil. The leachate was applied intermittently until 80 pore volumes were eluted through each column. Metal concentrations (Cu, Cr, and As) were measured in the leachate before passage through the columns as well as in each elutriate fraction collected. Chemical analysis was complemented with toxicity testing using Ceriodaphnia dubia, Selenastrum capricornutum, and MetPLATE™. Following application of 80 pore volumes of leachate, the columns were dissected and the profile of the metal concentrations within each column was determined. A comparison of the arsenic, chromium and copper leaching patterns found arsenic to be the most mobile, with copper the most retained in the soil columns (As < Cr < Cu). Transport patterns of As differed in the three soil types, with observed mobility highest in the sandy soil and lowest in the clay soil. The three metals accumulated in the top layer of soil. Arsenic posed the greatest risk when soil concentrations were compared to risk-based target levels. Although metals were detected in soil elutriates, no toxicity was detected in any of the soil column elutriates using any of the three toxicity assays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call