Abstract
Ultrawide-bandgap (UWBG) deep-ultraviolet photodetectors have received great attention due to their versatile applications in the fields of scientific research, civilian infrastructure, military defense, etc. In this perspective, we fabricated deep-ultraviolet β-MgGaO metal–semiconductor–metal photodetectors with interdigital Pt/Au metal contacts. β-Phase MgGaO ternary alloy thin films of different Mg atomic percentages were grown using oxygen plasma-assisted molecular beam epitaxy. Ultrawide bandgaps of 5.03, 5.09, 5.15, and 5.22 eV were achieved for thin films with and without Mg2+ incorporation, and light transmittances of all samples were around 90% in the visible region. Raman spectra indicate that Mg2+ atoms have replaced the position of Ga3+ ions in both octahedral and tetrahedral chains. The responsivity of the detectors was investigated. The irradiation wavelength-, temperature-, and power-dependent I–V curves, photocurrent spectra, and dynamics of the photocurrents were measured. This work suggests that UWBG β-MgGaO semiconductors have a potential for deep-ultraviolet photodetectors and other photonic device applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.